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Quenched disorder effects on deterministic inertia ratchets
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The effect of quenched disorder on the underdamped motion of a periodically driven particle on a ratchet
potential is studied. As a consequence of disorder, current reversal and chaotic diffusion may take place on
regular trajectories. On the other hand, on some chaotic trajectories disorder induces regular motion. A local-
ization effect similar to the Golosov phenomenon sets in whenever a disorder threshold that depends on the
mass of the particle is reached. Possible applications of the localization phenomenon are discussed.
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Thermal ratchets@1# are simple stochastic models where
nonzero net drift speed may be obtained from time correla
fluctuations interacting with asymmetric periodic structur
The study of ratchets has received much attention due
their general interest in modeling molecular motors@2#. An-
other sources of interest is the possible application of ra
ets for modeling nanoscale friction@3#, the potential for the
development of new approaches for separation of mic
scopic and mesoscopic objects@4#, models for understanding
surface smoothening@5#, and the building of micron-scale
devices@6#.

In thermal ratchets, thermal fluctuations are rectified
different ways according to the type of ratchet system.
example, in therocking ratchet, which is the most common
type of ratchet, a time-dependent external driving force
zero average acts as the rectifier pumping mechanism. In
kind of ratchet, thermal noise does indeed help the ratche
increasing its efficiency@7#; in contrast, spatial disorder re
duces the characteristic drift speed@8,9# of thermal ratchets.

Recently, the influence of quenched disorder, in the
sence of noise, on a periodically forced overdamped part
in a periodic asymmetric potential was considered@10#. An
outcome of this study was the discovery of diffusive tran
port in the presence of quenched disorder. Diffusion w
observed even with small amounts of added disorder and
diffusion current was found to increase with increasing no
and eventually reach the same order of magnitude as
regular drift. As is common in the study of thermal ratche
this study was carried out in the Smoluchowski limit of va
ishing mass. However, inertial effects are important in ma
experimental situations. For example, the finite mass of
particles plays an important role in friction at the nanosc
as well as in microscopic particle separation experime
Thus, it would be of interest to study the effects of quench
disorder on the dynamics of underdamped thermal ratc
with finite mass.

Inertial ratchets, even in the absence of noise, have a
complex dynamics, including chaotic motion@11,12#. This
deterministically induced chaos mimics, to some extent,
role of noise@13#. This added complexity drastically chang
some of the basic properties of thermal ratchets. For
ample, it has been shown that inertial ratchets can exh
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multiple reversals in the current direction@11,12#. It has been
suggested@12# that this behavior may be related to a crisis
which a chaotic ratchet state suddenly becomes periodic,
it was shown later@14# that current reversals can occur ev
in the absence of bifurcations from chaotic to periodic m
tion.

The aim of the present paper is to study the effects
spatial disorder on the dynamics of the underdamped de
ministic ratchet, especially the influence of disorder on re
lar and chaotic motion and current reversals. We will co
centrate on the model of a particle of nonvanishing ma
periodically driven in an asymmetric periodic potential wi
quenched disorder. No temporal noise term is conside
just the quenched disorder.

In scaled nondimensional coordinates, the equation
motion is given by@11#

e
d2x

dt2
1g

dx

dt
5cos~x!1m cos~2x!1G sin~vt !1aj~x!.

~1!

Here,e is the mass of the particle,g is the damping coeffi-
cient,G andv are, respectively, the amplitude and frequen
of an external oscillatory forcing, andaj(x) is the term due
to the quenched disorder. The termsj(x) are independent
uniformly distributed random variables with no spatial co
relations, corresponding to a piecewise constant force on
period of the potential. The coefficienta>0 is the strength
of the quenched disorder. The unperturbed ratchet poten

U~x!52sin~x!2m sin~2x!, ~2!

has been the subject of extensive recent studies@10,11,15,16#
mainly in models with no disorder. A recent work@12# has
analyzed the influence of the chaotic behavior in Eq.~1! with
a50 and has related it, with the help of a bifurcation di
gram, to the observed reversals in flow direction, but ana
posteriori study has reexamined some of its conclusio
@14#. Here we consider the addition of quenched disorde
order to analyze the effect of a more realistic representa
of the substrate on the dynamics of the ratchet. We note
with the disorder term included, the ratchet equation~1! can
©2001 The American Physical Society04-1
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also be used to model fluctuations in dc current amplitud
arrays of Josephson junctions@17# and in studies of friction,
particularly the sliding motion of clusters on surfaces@3#.

Previous work@11# has shown that in the absence
quenched disorder (a50) there are both regular and chao
solutions of Eq.~1! as well as multiple current reversals—
arguably related to crisis in the underlying dynamics@12,14#.
In the present work, we study the influence of quench
disorder on the system for both kinds of trajectories~regular
and chaotic!. Specifically, numerical solutions of Eq.~1!
were obtained using a variable step Runge-Kutta-Fehlb
method@18#. We lete520, g51.0, m50.25, v50.1, and
studied the behavior for several values ofG ~see below!. The
calculational details are the same as in@10#.

In Fig. 1, we show a typical periodic trajectory atG
50.9245 in the absence of disorder~the thick line! and the
corresponding trajectory with a very small amount
quenched noise,a50.001~the thin line!. It is apparent from
the figure that the trajectory gets modified. Figure 2 sho
the corresponding phase portrait confined to thex interval
(22p,0#. Notice that we exhibit in the same plot both th
case with no disorder~the points at the center of the s

FIG. 1. Trajectory of the particle forG50.9245, e520, g
51.0, m50.25, v50.1 with no quenched disorder~thick line!
and with a very small amount,a50.001, of quenched disorder~thin
line!.

FIG. 2. Phase portrait of two attractors of the ratchet equa
for G50.9245, e520, g51.0, m50.25, v50.1. With no
quenched noise, the attractor consists of the points at the cent
the squares. With a very small amount,a50.001, of quenched
disorder the attractor becomes chaotic.
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squares! and the chaotic attractor that it becomes after
quenched noise is added. The phase portrait confined to
samex interval is valid with disorder because the small d
order term may be considered as a small perturbation.

In order to get a global picture of the behavior, in Fig.
we show the bifurcation diagram of Eq.~1! as a function of
GP@0.65,1), both in the case with no disorder@Fig. 3~a!#
and with a small,a50.01, quantity of quenched noise add
@Fig. 3~b!#. The chosen range forG corresponds to the exis
tence of regular and chaotic solutions and inversion of c
rent in the absence of disorder. In all the chaotic cases a
lyzed, the sign of the current for a givenG coincides with the
sign of the majority ofx of the corresponding trajectory in
the bifurcation diagram; for the periodic states, on the ot
hand, we could not find any definitive correlation betwe
the current and the bifurcation behavior.

Figure 3~b! also shows the different ways in which dete
ministic states are affected when quenched disorder is in
duced. For example, forGP(0.8,0.9)~see also Fig. 2!, states
that are periodic in the deterministic case are changed
chaotic states. Consider a periodic state within a thin zon
the bifurcation diagram@as in theG zone roughly between
0.854 and 0.864 in Fig. 3~a!#. The effect of the quenched
noise on the system is to send the ratchet to a nearby ch
zone, as should be clear from Figs. 3~a! and 3~b!.

n

of

FIG. 3. ~a! Bifurcation diagram as a function ofG for e
520, g51.0, m50.25, v50.1 in the no-quenched-disorder cas
~b! Bifurcation diagram as a function ofG for e520, g51.0, m
50.25, v50.1 with an amount,a50.001, of quenched disorder.
4-2
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On the other hand, some irregular states in the reg
aroundG.0.73 of Fig. 3 are changed to more regular stat
This last effect can be associated with the taming of ch
with disorder@19#, where disorder induces ordered motio
characterized by very complex but nevertheless regular
terns. In a wide periodic window~like the one roughly be-
tween 0.693 and 0.722), the quenched noise has little e
on the periodic behavior, except near its upper end, wh
the chaotic zone itself becomes wider and superposes i
on the originally regular zone. Such behavior can also
seen by comparing Fig. 3~a! with Fig. 3~b!. The main point
then is that the ratchet dynamics follows the dominant
havior ~of theG zone it belongs to! when a small amount o
quenched noise is added.

In a recent paper, Popescuet al. @10# have shown that
quenched disorder induces a significant additional cha
‘‘diffusive’’ motion on the overdamped version of Eq.~1!.
Thus, in the finite inertia case we are considering, stro
fluctuations are expected and this calls for the use of a ti
dependent probability measure, as has been previously
in @10,11#.

A Gaussian distribution was chosen as the initial proba
ity density. Apart from early transients, a linear mean an
linear variance—which are characteristics of a Brown
motion—are observed. The third- and higher-order cum
lants increase slower thantn/2, up to n56, with n the order
of the cumulant. Therefore, the probability distributionpt(x)
is asymptotically a Gaussian, and, as is well known, the fi
and second cumulants, associated with the mean and
variance, are sufficient to describe the asymptotic evolu
of pt(x) @10,11#.

Averages were performed over ensembles of 5000 tra
tories starting from different initial conditions very close
the origin x50. The ensemble described above was left
evolve for 800 external drive periodsT, and every 10 periods
the positionsx(t) were stored for further analysis.

We first consider the case of periodic behavior w
G50.9245. In Figs. 4~a! and 4~b! we show results for the
first and second moments, i.e.,C1(t)5^x(t)& and C2(t)
5^@x(t)2^x(t)&#2&, respectively, wherê •••& means the
average over the ensemble, as a function of timet without
quenched disorder (a50), and with two different small
amounts of quenched disorder (a50.005 anda50.01). For
a50, C1(t).v(a)t and C2(t) tends to a constant a
t→`, which characterizes a periodic state. Fora50.005 and
a50.01, both first and second moments show an asymp
linear dependence on timet, C1(t).v(a)t, C2(t)
.D(a)t. There is a reversal of current due to the prese
of quenched disorder, and at the same time the onset of
fusion. This last effect is also obtained by adding a sm
amount of quenched disorder to the overdamped ratchet@10#.

To study the effect of quenched disorder on a chao
trajectory, we now consider the case ofG50.8967. We cal-
culate the first and second moments,C1(t) andC2(t), both
with no quenched disorder (a50) and with different small
amounts of quenched disorder (a50.005, a50.01, and
a50.05). The corresponding Figs. 5~a! and 5~b! show that
again there is a current reversal and the magnitude of
current increases with increasing quenched disorder. The
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isting diffusive behavior is also slightly increased.
It is interesting to note that the reversal of the current

not always associated with the addition of quenched dis
der, as can be seen in Figs. 6~a! and 6~b!, where we have
plotted C1(t) and C2(t) for the chaotic trajectory corre
sponding toG50.8955 without quenched disorder (a50),
and with different amounts of quenched disordera
50.03, a50.05, anda t.0.1). The current maintains its di
rection and increases with increasing disorder untila50.1.
With further increase ina, the current goes to zero asymp
totically. Diffusion also increases with increasing disord
for a,0.1, but it tends to zero asymptotically with increa
ing a. This localization effect may be clearly seen in th
particle trajectories when the particle gets stuck or oscilla
with the same amplitude for several periods.

A localization effect in random walks on random enviro
ments is known as the Golosov phenomenon in the rand
walk literature@20#. Its occurrence has been proven rigo
ously for systems with only nearest-neighbor transitions
Golosov@21#. It was also reported by Radons@22# on one-
dimensional chaotic maps where chaotic diffusion is tota
suppressed by the presence of quenched disorder.
Golosov phenomenon may be described as a packet of
tially close particles moving in a coherent fashion from o
minimum to the next deeper minimum. Hence, it may a
occur in a disordered ratchet when and if particle mot

FIG. 4. Influence of disorder on the probability distribution f
G50.9245, regular with no disorder for three different amounts
quenched disorder;a50, a50.005, anda50.01: ~a! First mo-
mentC1(t) for e520, g51.0, m50.25, v50.1 as a function of
time. ~b! Second momentC2(t) for e520, g51.0, m50.25, v
50.1 as a function of time.
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becomes locked to the external driving frequency. Our
sults show that for all values ofG studied, current and dif-
fusion asymptotically tend to zero if the amount of quench
disorder exceeds a certain threshold. It is important to n
that according to our preliminary results, this threshold
pends on the mass of the particle, it being smaller when
mass of the particle decreases. This is clearly an instanc
a localization effect analogous to the Golosov phenomen

An important application of the localization effect may b
in microscopic particle separation@4#. The reason is that the
threshold value of quenched disorder for the appearanc
the localization effect seems to depend on the mass of
particle. Thus, it may be possible to develop a new appro
for separating microscopic particles without having to p
vide an applied gradient. This can be accomplished by tun
the amount of quenched disorder on a microfabricated s
in a way that particles of smaller mass, with lower disord
threshold, remain stacked while more massive particles
with higher disorder threshold display a net current.

In summary, we have studied the effects of small amou
of quenched disorder on an underdamped~inertial! ratchet.
In analogy with the case of overdamped ratchets, we fo
that strong diffusive motion may be induced in the perio
trajectories. On the other hand, we found that for some
ues of G associated with chaotic trajectories in the ov
damped case, quenched disorder induces regular solut

FIG. 5. Influence of disorder on the probability distribution f
G50.8967, chaotic with no disorder for four different amounts
quenched disorder;a50, a50.005, a50.01, anda50.05: ~a!
First momentC1(t) for e520, g51.0, m50.25, v50.1 as a
function of time. ~b! Second momentC2(t) for e520, g
51.0, m50.25, v50.1 as a function of time.
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Disorder can cause current reversals in both chaotic
regular solutions, and whenever the amount of quenched
order exceeds a certain threshold the motion becomes lo
ized.

These results should be helpful in the interpretation
experimental results in studies of friction, particularly at t
nanoscale, as well as in understanding transport process
molecular motors. An interesting direction for future r
search may be to study the dependence of the localiza
phenomenon on the particle mass. This question is of inte
due to its possible application in designing new particle se
ration techniques.
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f
FIG. 6. Influence of disorder on the probability distribution f

G50.8955, chaotic with no disorder. Diffusion and current increa
keeping direction of current until localization sets in. Four differe
amounts of quenched disorder are shown:a50, a50.03, a
50.05, anda50.10. At a50.1 current and diffusion vanish as
ymptotically, which means localization.~a! First momentC1(t) for
e520, g51.0, m50.25, v50.1 as a function of time.~b! Sec-
ond momentC2(t) for e520, g51.0, m50.25, v50.1 as a
function of time.
4-4



ck
,

.

F.

in a

P.

QUENCHED DISORDER EFFECTS ON DETERMINISTIC . . . PHYSICAL REVIEW E63 061104
@1# C. R. Doering, Il Nuovo Cimento17, 685 ~1995!; P. Hänggi
and R. Bartussek, inLecture Notes in Physics, edited by J.
Parisi, S. C. Mu¨ller, and W. Zimmerman~Springer, Berlin,
1996!, Vol. 476, pp. 294–308; R. D. Astumian, Science276,
917 ~1997!.

@2# K. Sbovoda, C. F. Schmidt, B. J. Schnapp, and S. M. Blo
Nature~London! 365, 721~1993!; J. T. Finer, R. M. Simmons
and J. A. Spudich,ibid. 368, 113 ~1994!.

@3# J. Krim, D. H. Solina, and R. Chiarello, Phys. Rev. Lett.66,
181 ~1991!; M. Porto, M. Urbakh, and J. Klafter,ibid. 85, 491
~2000!; M. Porto, M. Urbakh, and J. Klafter,ibid. 84, 6058
~2000!; H. G. E. Hentschel, F. Family, and Y. Braiman,ibid.
83, 104 ~1999!; V. Zaloj, M. Urbakh, and J. Klafter,ibid. 82,
4823 ~1999!; Y. Braiman et al., Phys. Rev. E59, R4737
~1999!.
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@5# I. Derényi, Choongseop Lee, and Albert-La´szló Barabási,
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