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Quenched disorder effects on deterministic inertia ratchets
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The effect of quenched disorder on the underdamped motion of a periodically driven particle on a ratchet
potential is studied. As a consequence of disorder, current reversal and chaotic diffusion may take place on
regular trajectories. On the other hand, on some chaotic trajectories disorder induces regular motion. A local-
ization effect similar to the Golosov phenomenon sets in whenever a disorder threshold that depends on the
mass of the particle is reached. Possible applications of the localization phenomenon are discussed.

DOI: 10.1103/PhysRevE.63.061104 PACS nuni)er82.40.Bj, 05.45.Ac, 87.15.Vv, 05.60.Cd

Thermal ratchetfl] are simple stochastic models where amultiple reversals in the current directiphl,12. It has been
nonzero net drift speed may be obtained from time correlateduggested12] that this behavior may be related to a crisis in
fluctuations interacting with asymmetric periodic structureswhich a chaotic ratchet state suddenly becomes periodic, but
The study of ratchets has received much attention due tt was shown latef14] that current reversals can occur even

their general interest in modeling molecular motf®§ An- in the absence of bifurcations from chaotic to periodic mo-
other sources of interest is the possible application of ratchtion. ) )
ets for modeling nanoscale frictid], the potential for the The aim of the present paper is to study the effects of

development of new approaches for separation of microSPatial disorder on the dynamics of the underdamped deter-
scopic and mesoscopic objet, models for understanding Ministic ratchgt, esp_emally the influence of disorder on regu-
surface smootheninfp], and the building of micron-scale lar and chaotic motion and current reversals. We_W|II con-
devices[6]. centrate on the model of a particle of nonvanishing mass,
In thermal ratchets, thermal fluctuations are rectified inPericdically driven in an asymmetric periodic potential with
different ways according to the type of ratchet system. Foguenched d|sorder._No temporal noise term is considered,
example, in theocking ratchef which is the most common just the quenched disorder. _ .
type of ratchet, a time-dependent external driving force of [N scaled nondimensional coordinates, the equation of
zero average acts as the rectifier pumping mechanism. In thfgotion is given by{11]
kind of ratchet, thermal noise does indeed help the ratchet by
increasing its efficiency7]; in contrast, spatial disorder re-
duces the characteristic drift spefj9] of thermal ratchets.
Recently, the influence of quenched disorder, in the ab- (h)
sence of noise, on a periodically forced overdamped particle
in a periodic asymmetric potential was considefg]. An  Here, € is the mass of the particle, is the damping coeffi-
outcome of this study was the discovery of diffusive trans-cient,I" andw are, respectively, the amplitude and frequency
port in the presence of quenched disorder. Diffusion wa®f an external oscillatory forcing, angé(x) is the term due
observed even with small amounts of added disorder and th@ the quenched disorder. The ter#) are independent,
diffusion current was found to increase with increasing noise/niformly distributed random variables with no spatial cor-
and eventually reach the same order of magnitude as thlations, corresponding to a piecewise constant force on the
regular drift. As is common in the study of thermal ratchets,period of the potential. The coefficieat=0 is the strength
this study was carried out in the Smoluchowski limit of van- of the quenched disorder. The unperturbed ratchet potential,
ishing mass. However, inertial effects are important in many
experimental situations. For example, the finite mass of the U(x)= —sin(x) — u sin(2x), 2
particles plays an important role in friction at the nanoscale
as well as in microscopic particle separation experimentshas been the subject of extensive recent stydied 1,15,16
Thus, it would be of interest to study the effects of quenchednainly in models with no disorder. A recent wofk?2] has
disorder on the dynamics of underdamped thermal ratchew@nalyzed the influence of the chaotic behavior in @gwith
with finite mass. a=0 and has related it, with the help of a bifurcation dia-
Inertial ratchets, even in the absence of noise, have a vergram, to the observed reversals in flow direction, butaan
complex dynamics, including chaotic moti¢t1,12. This  posteriori study has reexamined some of its conclusions
deterministically induced chaos mimics, to some extent, th¢14]. Here we consider the addition of quenched disorder in
role of noisg 13]. This added complexity drastically changes order to analyze the effect of a more realistic representation
some of the basic properties of thermal ratchets. For exef the substrate on the dynamics of the ratchet. We note that
ample, it has been shown that inertial ratchets can exhibiwith the disorder term included, the ratchet equatibncan

d>x  dx

GW-F ya:cosx)Jr,u cog 2x) + 1" sin(wt) + aé(X).
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FIG. 1. Trajectory of the particle fof'=0.9245, =20, y (a)
=1.0, ©=0.25, ®=0.1 with no quenched disordéthick line) :
and with a very small amoun&= 0.001, of quenched disordéhin 6 -
line). -
4 —
also be used to model fluctuations in dc current amplitude in . L
arrays of Josephson junctiof7] and in studies of friction, i
particularly the sliding motion of clusters on surfa¢ds X o}
Previous work[11] has shown that in the absence of i
guenched disordera(=0) there are both regular and chaotic 2r
solutions of Eq.(1) as well as multiple current reversals— P i
arguably related to crisis in the underlying dynanijit®,14. LM
In the present work, we study the influence of quenched 6 L ‘
disorder on the system for both kinds of trajectoiesgular 0'7 i o‘s : 0'9 ]
and chaotif. Specifically, numerical solutions of Ed1) ©) : “r :

were obtained using a variable step Runge-Kutta-Fehlberg

method[18]. We lete=20, y=1.0, ©=0.25, ®=0.1, and FIG. 3. (a) Bifurcation diagram as a function of for e

studied the behavior for several valuedofsee below. The  _ g y=1.0, £=0.25, ©=0.1 in the no-quenched-disorder case.
calculational details are the same a410]. . (b) Bifurcation diagram as a function df for e=20, y=1.0, u
In Fig. 1, we show a typical periodic trajectory &t  —0.25 ©=0.1 with an amounte=0.001, of quenched disorder.

=0.9245 in the absence of disordghe thick line and the

corresponding trajectory with a very small amount oOf gy, arex and the chaotic attractor that it becomes after the
quenched noisey=0.001(the thin line. It is apparent from o ,anched noise is added. The phase portrait confined to the
the figure that the trajectory gets modified. Figure 2 showgymey interval is valid with disorder because the small dis-
the corresponding phase portrait confined to thterval o qer term may be considered as a small perturbation.
(—2m,0]. Notice that we exhibit in the same plot both the , 5rqer to get a global picture of the behavior, in Fig. 3
case with no disorde(the points at the center of the siX o show the bifurcation diagram of E€L) as a function of
I'[0.65,1), both in the case with no disordétig. 3(a)]

and with a smallpg=0.01, quantity of quenched noise added
[Fig. 3(b)]. The chosen range fdf corresponds to the exis-

04— —

0.2 tence of regular and chaotic solutions and inversion of cur-
rent in the absence of disorder. In all the chaotic cases ana-
0 lyzed, the sign of the current for a givéhcoincides with the
v sign of the majority ofx of the corresponding trajectory in
-02 the bifurcation diagram; for the periodic states, on the other
hand, we could not find any definitive correlation between
04k the current and the bifurcation behavior.

Figure 3b) also shows the different ways in which deter-
ministic states are affected when quenched disorder is intro-
duced. For example, fdr € (0.8,0.9)(see also Fig. @ states
that are periodic in the deterministic case are changed to

FIG. 2. Phase portrait of two attractors of the ratchet equatiorfhaotic states. Consider a periodic state within a thin zone in
for T=0.9245 =20, y=1.0, x=0.25, =0.1. With no the bifurcation diagranjas in thel' zone roughly between
quenched noise, the attractor consists of the points at the center 8§854 and 0.864 in Fig.(8)]. The effect of the quenched
the squares. With a very small amount=0.001, of quenched noise on the system is to send the ratchet to a nearby chaotic
disorder the attractor becomes chaotic. zone, as should be clear from Figga@and 3b).
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On the other hand, some irregular states in the region
aroundl’=0.73 of Fig. 3 are changed to more regular states.
This last effect can be associated with the taming of chaos
with disorder[19], where disorder induces ordered motion
characterized by very complex but nevertheless regular pat-
terns. In a wide periodic windoulike the one roughly be-
tween 0.693 and 0.722), the quenched noise has little effect
on the periodic behavior, except near its upper end, where
the chaotic zone itself becomes wider and superposes itself
on the originally regular zone. Such behavior can also be
seen by comparing Fig.(8 with Fig. 3(b). The main point
then is that the ratchet dynamics follows the dominant be-
havior (of theI" zone it belongs towhen a small amount of
guenched noise is added.
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In a recent paper, Popeseat al. [10] have shown that
guenched disorder induces a significant additional chaotic
“diffusive” motion on the overdamped version of EqL).
Thus, in the finite inertia case we are considering, strong
fluctuations are expected and this calls for the use of a time-
dependent probability measure, as has been previously done
in [10,11).

A Gaussian distribution was chosen as the initial probabil-
ity density. Apart from early transients, a linear mean and a
linear variance—which are characteristics of a Brownian L e
motion—are observed. The third- and higher-order cumu- 1x10° 2x10° 3x10
lants increase slower thaff?, up ton=6, with n the order () t

of the cumulant. Therefore, the probability distributipy(x) FIG. 4. Influence of disorder on the probability distribution for

is asymptotically a Gaussian, and, as is well known, the firsp — g 9245, regular with no disorder for three different amounts of
and second cumulants, associated with the mean and th@enched disordere=0, «=0.005, ande=0.01: (a) First mo-

variance, are sufficient to describe the asymptotic evolutiomentC,(t) for =20, y=1.0, ©=0.25, w=0.1 as a function of
of py(x) [10,11]. time. (b) Second momen€,(t) for e=20, y=1.0, u=0.25, w
Averages were performed over ensembles of 5000 trajec=0.1 as a function of time.
tories starting from different initial conditions very close to
the originx=0. The ensemble described above was left toisting diffusive behavior is also slightly increased.
evolve for 800 external drive periods and every 10 periods It is interesting to note that the reversal of the current is
the positionsx(t) were stored for further analysis. not always associated with the addition of quenched disor-
We first consider the case of periodic behavior withder, as can be seen in Figgapand &b), where we have
['=0.9245. In Figs. @) and 4b) we show results for the plotted C,(t) and C,(t) for the chaotic trajectory corre-
first and second moments, i.6G;(t)=(x(t)) and C,(t)  sponding tol’=0.8955 without quenched disordes £ 0),
=([x(t) = (x(t))]%), respectively, wherd---) means the and with different amounts of quenched disordes (
average over the ensemble, as a function of ttniéthout ~ =0.03, «=0.05, andw;=0.1). The current maintains its di-
quenched disordera(=0), and with two different small rection and increases with increasing disorder umti0.1.
amounts of quenched disorder<0.005 anda=0.01). For  With further increase iny, the current goes to zero asymp-
a=0, Cy(t)=v(a)t and C,(t) tends to a constant as totically. Diffusion also increases with increasing disorder
t— oo, which characterizes a periodic state. leer 0.005 and  for o< 0.1, but it tends to zero asymptotically with increas-
a=0.01, both first and second moments show an asymptotigig «. This localization effect may be clearly seen in the
linear dependence on timet, Ci(t)=v(a)t, Cy(t) particle trajectories when the particle gets stuck or oscillates
=D(a)t. There is a reversal of current due to the presencevith the same amplitude for several periods.
of quenched disorder, and at the same time the onset of dif- A localization effect in random walks on random environ-
fusion. This last effect is also obtained by adding a smaliments is known as the Golosov phenomenon in the random-
amount of quenched disorder to the overdamped rafd®¢t  walk literature[20]. Its occurrence has been proven rigor-
To study the effect of quenched disorder on a chaotiomusly for systems with only nearest-neighbor transitions by
trajectory, we now consider the caselof0.8967. We cal- Golosov[21]. It was also reported by Radoh®2] on one-
culate the first and second momen@s(t) and C,(t), both  dimensional chaotic maps where chaotic diffusion is totally
with no quenched disorde=0) and with different small suppressed by the presence of quenched disorder. The
amounts of quenched disordew£0.005, «=0.01, and Golosov phenomenon may be described as a packet of ini-
a=0.05). The corresponding Figs(ab and §b) show that tially close particles moving in a coherent fashion from one
again there is a current reversal and the magnitude of theinimum to the next deeper minimum. Hence, it may also
current increases with increasing quenched disorder. The exccur in a disordered ratchet when and if particle motion
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FIG. 5. Influence of disorder on the probability distribution for ~ FIG. 6. Influence of disorder on the probability distribution for
I"'=0.8967, chaotic with no disorder for four different amounts of I'=0.8955, chaotic with no disorder. Diffusion and current increase
guenched disordergg=0, «=0.005, =0.01, anda=0.05: (a) keeping direction of current until localization sets in. Four different
First momentC,(t) for e=20, y=1.0, ©n=0.25, ®=0.1 as a amounts of quenched disorder are showr=0, «=0.03, «
function of time. (b) Second momentC,(t) for e=20, y =0.05, anda=0.10. At =0.1 current and diffusion vanish as-
=1.0, ©=0.25, »=0.1 as a function of time. ymptotically, which means localizatiofa) First momentC(t) for

€=20, y=1.0, ©=0.25, »=0.1 as a function of time(b) Sec-
becomes locked to the external driving frequency. Our reend momentC,(t) for e=20, y=1.0, ©u=0.25, »=0.1 as a
sults show that for all values df studied, current and dif- function of time.
fusion asymptotically tend to zero if the amount of quenched

disorder exceeds a certain threshold. It is important 10 NOtgyiq, ey can cause current reversals in both chaotic and
that according to our preliminary results, this threshold de-

pends on the mass of the particle, it being smaller when thregular solutions, and whenever the amount of quenched dis-

: S . S]rder exceeds a certain threshold the motion becomes local-
mass of the particle decreases. This is clearly an instance d

a localization effect analogous to the Golosov phenomenon.
An important application of the localization effect may be
in microscopic particle separatigd]. The reason is that the

These results should be helpful in the interpretation of
experimental results in studies of friction, particularly at the

threshold value of auenched disorder for the appearance noscale, as well as in understanding transport processes in
L d PP olecular motors. An interesting direction for future re-
the localization effect seems to depend on the mass of th

particle. Thus, it may be possible to develop a new approaCgearch may be to study the dependence of the localization
for sepérating, microscopic particles without having to pro_phenomenon on the particle mass. This question is of interest

vide an applied gradient. This can be accomplished by tuningalft(ieotnot'éiﬁr?;ﬂglse application in designing new particle sepa-

the amount of quenched disorder on a microfabricated sieve
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